Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center.

نویسندگان

  • Neuza Satomi Sato
  • Naomi Hirabayashi
  • Ilana Agmon
  • Ada Yonath
  • Tsutomu Suzuki
چکیده

During protein synthesis, the ribosome catalyzes peptide-bond formation. Biochemical and structural studies revealed that conserved nucleotides in the peptidyl-transferase center (PTC) and its proximity may play a key role in peptide-bond formation; the exact mechanism involved remains unclear. To more precisely define the functional importance of the highly conserved residues, we used a systematic genetic method, which we named SSER (systematic selection of functional sequences by enforced replacement), that allowed us to identify essential nucleotides for ribosomal function from randomized rRNA libraries in Escherichia coli cells. These libraries were constructed by complete randomization of the critical regions in and around the PTC. The selected variants contained natural rRNA sequences from other organisms and organelles as well as unnatural functional sequences; hence providing insights into the functional roles played by these essential bases and suggesting how the universal catalytic mechanism of peptide-bond formation could evolve in all living organisms. Our results highlight essential bases and interactions, which are shaping the PTC architecture and guiding the motions of the tRNA terminus from the A to the P site, found to be crucial not only for the formation of the peptide bond but also for nascent chain elongation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intragenic suppressor of cold sensitivity identifies potentially interacting bases in the peptidyl transferase center of Tetrahymena rRNA.

Peptidyl transfer of a growing peptide on a ribosome-bound transfer RNA (tRNA) to an incoming amino acyl tRNA is the central step in translation, and it may be catalyzed primarily by the large subunit (LSU) ribosomal RNA (rRNA). Genetic and biochemical evidence suggests that the central loop of domain V of the LSU rRNA plays a direct role in peptidyl transfer. It was previously found that a sin...

متن کامل

23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are...

متن کامل

Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3.

The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with ...

متن کامل

Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino g...

متن کامل

Peptidyl Transferase Center and the Emergence of the Translation System

In this work, the three-dimensional (3D) structure of the ancestral Peptidyl Transferase Center (PTC) built by concatamers of ancestral sequences of tRNAs was reconstructed, and its possible interactions with tRNAs molecules were analyzed. The 3D structure of the ancestral PTC was also compared with the current PTC of T. thermophilus. Docking experiments between the ancestral PTC and tRNAs sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 42  شماره 

صفحات  -

تاریخ انتشار 2006